Structural and electronic impact of fluorine in the ortho positions of the phenoxy groups of phenyl-phosphonite and -phosphinite ligands in compounds of platinum-group metals

Malcolm J. Atherton, ${ }^{a}$ John Fawcett, ${ }^{b}$ Adrian P. Hill, ${ }^{b}$ John H. Holloway, ${ }^{b}$ Eric G. Hope, ${ }^{b}$
David R. Russell, ${ }^{b}$ Graham C. Saunders ${ }^{*, b}$ and Russell M. J. Stead ${ }^{b}$
${ }^{a}$ BNFL Fluorochemicals Ltd., Springfields, Salwick, Preston PR4 OXJ, UK
${ }^{b}$ Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK

Abstract

The phosphonites $\mathrm{PPh}(\mathrm{OPh})_{2} \mathbf{I}$ and $\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2} \mathbf{I I}$, and the phosphinites $\mathrm{PPh}_{2}(\mathrm{OPh})$ III and $\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)$ IV reacted with $\left[\left\{\mathrm{RhCl}(\mu-\mathrm{Cl})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right\}_{2}\right]$ to yield the complexes $\left[\mathrm{RhCl}_{2} \mathrm{~L}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$ $\left[\mathrm{L}=\mathrm{PPh}(\mathrm{OPh})_{2}\right.$ 1, $\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2}$ 2, $\mathrm{PPh}_{2}(\mathrm{OPh}) 3$ or $\left.\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right) 4\right]$. The perprotio-phosphonite and -phosphinite, I and III, reacted with $\left[\left\{\mathrm{PtCl}(\mu-\mathrm{Cl})\left(\mathrm{PEt}_{3}\right)\right\}_{2}\right]$ to yield exclusively the cis isomers of $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}^{2}\right.\right.$ $\left.\left.(\mathrm{OPh})_{2}\right\}\right] 5$ and $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}_{2}(\mathrm{OPh})\right\}\right] 7$. The fluorine-containing phosphonite and phosphinite, II and $\mathbf{I V}$, reacted with $\left[\left\{\mathrm{PtCl}(\mu-\mathrm{Cl})\left(\mathrm{PEt}_{3}\right)\right\}_{2}\right]$ to give the trans isomers of $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2}\right\}\right]$ 6a and $\left[\mathrm{PtCl}_{2}-\right.$ $\left.\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)\right\}\right] \mathbf{8 a}$, which isomerize slowly in acetone solution to yield the cis isomers $\mathbf{6 b}$ and $\mathbf{8 b}$. Values of ${ }^{1} J(\mathrm{RhP})$ and ${ }^{1} J(\mathrm{PtP})$ strongly suggest that the presence of fluorine atoms in the ortho positions of the phenoxy groups has a negligible effect on the electronic properties of the phosphorus atoms of these ligands. X-Ray single-crystal structural studies on $\mathbf{1 , 4 , 6 a}, \mathbf{6 b}, \mathbf{7}, \mathbf{8 a}$ and $\mathbf{8 b}$ revealed that the fluorine atoms do, however, exert a profound steric influence.

The presence of fluorine in strategic positions in phosphorus(III) ligands can have a dramatic impact on the nature of the complexes they form. Transition-metal complexes of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}{ }^{1-3} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}{ }^{4}{ }^{4} \mathrm{PPh}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2},{ }^{2} \mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right),{ }^{2,5} \mathrm{PPh}_{2}-$ $\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}{ }^{4}$ and $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}{ }^{2,6-10}$ possess significantly different chemical and structural properties to their perprotio analogues. These differences are ascribed to the σ withdrawing property of the fluorine atom and its greater bulk compared to that of the hydrogen atom, and it is apparent that the fluorine atoms in the ortho positions of the phenyl rings exert the largest steric and electronic effects. ${ }^{4}$ We are interested in the effects that fluorine in the ortho positions of aryl rings in other phosphorus(III) ligands bestow upon transition-metal complexes. We have reported the preparation and characterization of the fluorine-containing tris(2,6-difluorophenyl) phosphite and its complexation with platinum-group metals. ${ }^{11-13}$ Comparison of the NMR spectral data for this compound and its complexes with those of triphenyl phosphite and its complexes suggests that the two ligands possess similar σ-donor/ π-acceptor properties. The crystal structures of $\left[\mathrm{IrCl}_{2}-\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]^{11} \quad$ and $\operatorname{trans}-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)-\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right]^{12,13}$ indicate that tris(2,6-difluorophenyl) phosphite is considerably more bulky than triphenyl phosphite and this has a dramatic effect on its complexes. Here we report the new fluorine-containing phosphorus compounds bis(2,6difluorophenyl) phenylphosphonite and (2,6-difluorophenyl) diphenylphosphinite and compare their electronic and steric effects with those of $\mathrm{PPh}(\mathrm{OPh})_{2}{ }^{14}$ and $\mathrm{PPh}_{2}(\mathrm{OPh})^{15}$ by NMR and X-ray crystallographic studies of the rhodium and platinum complexes, $\left[\mathrm{RhCl}_{2} \mathrm{~L}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$ and $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$.

Results and Discussion

Synthesis and characterization of the compounds

Treatment of PPhCl_{2} and $\mathrm{PPh}_{2} \mathrm{Cl}$ with 2,6-difluorophenol in the presence of triethylamine yielded bis(2,6-difluorophenyl) phenylphosphonite II and 2,6-difluorophenyl diphenylphosphinite IV, respectively (Scheme 1). They were both obtained

Scheme 1 (i) $\mathrm{PPhCl}_{2}, \mathrm{NEt}_{3}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (ii) $\mathrm{PPh}_{2} \mathrm{Cl}, \mathrm{NEt}_{3}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$
as yellow oils in ca. 50% yields, and were characterized by mass, NMR and IR spectroscopies. The known compounds $\mathrm{PPh}(\mathrm{OPh})_{2} \mathbf{I}^{14}$ and $\mathrm{PPh}_{2}(\mathrm{OPh}) \mathbf{I I I}{ }^{15}$ were prepared similarly. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of II exhibits a quintet at δ 183.5, compared with 158.5 for \mathbf{I}, with a coupling constant, ${ }^{4} J(\mathrm{PF})$, of 32.9 Hz , and IV exhibits a triplet at $\delta 133.1$, compared with 111.1 for III, with ${ }^{4} J(\mathrm{PF}) 28.5 \mathrm{~Hz}$. The values of δ_{P} for the compounds $\mathrm{P}(\mathrm{OPh})_{3}(128.2), \mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}$ (131.8), ${ }^{11} \mathbf{I}-\mathbf{I V}$ and PPh_{3} do not follow a simple trend. Values for three-co-ordinate phosphorus(III) compounds vary considerably and, although that for PR_{3} may be dependent upon the electronegativity of R and the $\mathrm{R}-\mathrm{P}-\mathrm{R}$ angles, those for $\mathrm{P}-\mathrm{O}-\mathrm{R}$ compounds do not show such a simple dependence. ${ }^{16}$ Thus, the electronic nature of the phosphorus in these compounds cannot be discerned from the values of δ_{p}. It is noted, however, that whilst the values of δ_{P} for $\mathrm{P}(\mathrm{OPh})_{3}$ and $\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}$ are similar, the differences between those for I and II, and for III and IV, are 22-25 ppm, with δ_{P} for the fluorine-containing compounds at higher frequency than those of the respective perprotio analogues. The values of the coupling constants ${ }^{4} J(\mathrm{PF})$

Table 1 Analytical, mass and ${ }^{1} \mathrm{H}$ NMR spectral data for compounds $\mathbf{1 - 8}$

Compound	Analysis (\%) ${ }^{a}$ and m / z^{b}	${ }^{1} \mathrm{H}$ NMR $(\delta, J / \mathrm{Hz})$
1	$\begin{aligned} & \mathrm{C}, 55.5(55.7) ; \mathrm{H}, 4.9(5.0) ; \mathrm{Cl}, 12.35(11.75) \\ & 602\left(M^{+}\right), 567\left([M-\mathrm{Cl}]^{+}\right), 531\left([M-2 \mathrm{Cl}-\mathrm{H}]^{+}\right) \end{aligned}$	$8.16(2 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 7.28\left(7 \mathrm{H}, \mathrm{m}, \mathrm{PPh}\right.$ and $o-\mathrm{H}$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{5}\right), 7.22(4 \mathrm{H}, \mathrm{vt}, J$ 7.9, $m-\mathrm{H}$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{5}\right), 7.05\left[2 \mathrm{H}, \mathrm{t},{ }^{3} J\left(\mathrm{H}_{m} \mathrm{H}_{p}\right) 7.0, p-\mathrm{H}\right.$ of $\mathrm{OC}_{6} \mathrm{H}_{5}$], 1.47 [15 $\left.\mathrm{H}, \mathrm{d}, J(\mathrm{PH}) 4.9, \mathrm{CH}_{3}\right]^{c}$
$2{ }^{\text {d }}$	$\begin{aligned} & \mathrm{C}, 48.3(48.3) ; \mathrm{H}, 3.8(3.8) ; \mathrm{Cl}, 13.0 \text { (13.4) } \\ & 674\left(M^{+}\right), 639\left([M-\mathrm{Cl}]^{+}\right) \end{aligned}$	$8.08(2 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 7.41(3 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 6.98\left(2 \mathrm{H}, \mathrm{m}, p-\mathrm{H}\right.$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right)$, $6.63\left(4 \mathrm{H}, \mathrm{m}, m-\mathrm{H}\right.$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right), 5.32\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 1.56[15 \mathrm{H}, \mathrm{d}, J(\mathrm{PH})$ 4.9, $\left.\mathrm{CH}_{3}\right]^{c}$
$3{ }^{e}$	$\begin{aligned} & \mathrm{C}, 56.4(56.0) ; \mathrm{H}, 5.0(5.0) ; \mathrm{Cl}, 15.45(14.5) \\ & 586\left(M^{+}\right), 551\left([M-\mathrm{Cl}]^{+}\right), 515\left([M-2 \mathrm{Cl}-\mathrm{H}]^{+}\right) \end{aligned}$	$8.21(4 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 7.45\left[2 \mathrm{H}, \mathrm{d},{ }^{3} J\left(\mathrm{H}_{o} \mathrm{H}_{m}\right) 7.1, o-\mathrm{H}\right.$ of $\mathrm{OC}_{6} \mathrm{H}_{5}$], $7.36(6 \mathrm{H}$, $\mathrm{m}, \mathrm{PPh}), 7.23\left(2 \mathrm{H}, \mathrm{vt}, J 7.5, m-\mathrm{H}\right.$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{5}\right), 7.00\left[1 \mathrm{H}, \mathrm{t},{ }^{3} J\left(\mathrm{H}_{m} \mathrm{H}_{p}\right) 7.3\right.$, p-H of $\left.\mathrm{OC}_{6} \mathrm{H}_{5}\right], 5.30\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 1.36\left[15 \mathrm{H}, \mathrm{d}, J(\mathrm{PH}) 3.9, \mathrm{CH}_{3}\right]^{c}$
4	$\begin{aligned} & \mathrm{C}, 53.2(54.0) ; \mathrm{H}, 4.4(4.5) ; \mathrm{Cl}, 11.15 \text { (11.4) } \\ & 622\left(M^{+}\right), 587\left([M-\mathrm{Cl}]^{+}\right) \end{aligned}$	$8.12(4 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 7.39(6 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 6.86\left(1 \mathrm{H}, \mathrm{m}, p-\mathrm{H}\right.$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right)$, $6.72\left(2 \mathrm{H}, \mathrm{vt}, J 8.1, m-\mathrm{H}\right.$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right), 1.42\left[15 \mathrm{H}, \mathrm{d}, J(\mathrm{PH}) 4.0, \mathrm{CH}_{3}\right]^{c}$
$5{ }^{f}$	$\begin{aligned} & \mathrm{C}, 44.0(42.5) ; \mathrm{H}, 4.1(4.5) ; \mathrm{Cl}, 10.4(10.45) \\ & 643\left([M-\mathrm{Cl}]^{+}\right), 605\left([M-2 \mathrm{Cl}-3 \mathrm{H}]^{+}\right) \end{aligned}$	$\begin{aligned} & 7.31\left(15 \mathrm{H}, \mathrm{~m}, \mathrm{PPh} \text { and } \mathrm{OC}_{6} \mathrm{H}_{5}\right), 2.11\left(6 \mathrm{H}, \mathrm{~m}, \mathrm{CH}_{2}\right), 1.02\left[9 \mathrm{H}, \mathrm{dt},{ }^{3} J(\mathrm{PH})\right. \\ & \left.17.8,{ }^{3} J(\mathrm{HH}) 7.6, \mathrm{CH}_{3}\right]^{c} \end{aligned}$
6	$750\left(M^{+}\right), 715\left([M-\mathrm{Cl}]^{+}\right)$	$8.02(2 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 7.52(3 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 7.18\left(2 \mathrm{H}, \mathrm{m}, p-\mathrm{H}\right.$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right)$, $7.02\left(4 \mathrm{H}, \mathrm{vt}, J 8.0, m-\mathrm{H}\right.$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right), 1.84\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.08[9 \mathrm{H}, \mathrm{dt}$, $\left.{ }^{3} J(\mathrm{PH}) 16.9,{ }^{3} J(\mathrm{HH}) 7.6, \mathrm{CH}_{3}\right]^{g}$
6b	$\begin{aligned} & \mathrm{C}, 38.1(38.4) ; \mathrm{H}, 3.3(3.5) ; \text { Cl, } 9.2 \text { (9.45) } \\ & 750\left(M^{+}\right), 715\left([M-\mathrm{Cl}]^{+}\right) \end{aligned}$	$7.92(2 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 7.56(1 \mathrm{H}, \mathrm{m}, p-\mathrm{H}$ of PPh$), 7.46(2 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 7.26$ (2 $\mathrm{H}, \mathrm{m}, p-\mathrm{H}$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right), 7.04\left(4 \mathrm{H}, \mathrm{m}, m-\mathrm{H}\right.$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right), 2.33(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.28\left[9 \mathrm{H}, \mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{PH}) 17.7,{ }^{3} J(\mathrm{HH}) 7.6, \mathrm{CH}_{3}\right]^{g}$
		$7.91(2 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 7.47(1 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 7.36(2 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 7.07(2 \mathrm{H}, \mathrm{m}$, $p-\mathrm{H}$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right), 6.67\left(4 \mathrm{H}, \mathrm{m}, m-\mathrm{H}\right.$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right), 2.28\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.27\left[9 \mathrm{H}, \mathrm{dt},{ }^{3} J(\mathrm{PH}) 17.8,{ }^{3} J(\mathrm{HH}) 7.6, \mathrm{CH}_{3}\right]^{c}$
7	$\begin{aligned} & \mathrm{C}, 43.0(43.5) ; \mathrm{H}, 4.2(4.6) ; \mathrm{Cl}, 9.9(10.7) \\ & 662\left(M^{+}\right), 627\left([M-\mathrm{Cl}]^{+}\right), 590\left([M-2 \mathrm{Cl}-2 \mathrm{H}]^{+}\right) \end{aligned}$	$\begin{aligned} & 7.66(4 \mathrm{H}, \mathrm{~m}, \mathrm{PPh}), 7.44(6 \mathrm{H}, \mathrm{~m}, \mathrm{PPh}), 7.18(2 \mathrm{H}, \mathrm{vt}, J 7.6, m-\mathrm{H} \text { of } \\ & \left.\mathrm{OC}_{6} \mathrm{H}_{5}\right), 7.07\left[1 \mathrm{H}, \mathrm{t},{ }^{3} J\left(\mathrm{H}_{m} \mathrm{H}_{p}\right) 6.9, p-\mathrm{H} \text { of } \mathrm{OC}_{6} \mathrm{H}_{5}\right], 6.94\left[2 \mathrm{H}, \mathrm{~d},{ }^{3} J\left(\mathrm{H}_{o} \mathrm{H}_{m}\right)\right. \\ & \left.7.6, o-\mathrm{H} \text { of } \mathrm{OC}_{6} \mathrm{H}_{5}\right], 2.08\left(6 \mathrm{H}, \mathrm{~m}, \mathrm{CH}_{2}\right), 1.09\left[9 \mathrm{H}, \mathrm{dt},{ }^{3} J(\mathrm{PH}) 17.6,\right. \\ & \left.\left.{ }^{3} J(\mathrm{HH}) 7.7, \mathrm{CH}_{3}\right]\right]^{c} \end{aligned}$
8 a	$698\left(M^{+}\right), 663\left([M-\mathrm{Cl}]^{+}\right)$	$7.87(4 \mathrm{H}, \mathrm{m}, \mathrm{PPh})$, $7.51(6 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 7.14\left(1 \mathrm{H}, \mathrm{m}, p-\mathrm{H}\right.$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right)$, $6.99\left(2 \mathrm{H}, \mathrm{vt}, J 8.3, m-\mathrm{H}\right.$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right), 1.87\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.12[9 \mathrm{H}, \mathrm{dt}$, $\left.{ }^{3} J(\mathrm{PH}) 16.7,{ }^{3} J(\mathrm{HH}) 7.6, \mathrm{CH}_{3}\right]^{g}$
8b	$\begin{aligned} & \mathrm{C}, 40.9(41.3) ; \mathrm{H}, 4.0(4.0) ; \mathrm{Cl}, 10.6(10.15) \\ & 698\left(M^{+}\right), 663\left([M-\mathrm{Cl}]^{+}\right) \end{aligned}$	$7.92(4 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 7.48(6 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 7.08\left(1 \mathrm{H}, \mathrm{m}, p-\mathrm{H}\right.$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right)$, $6.87\left(2 \mathrm{H}, \mathrm{vt}, J 8.6, m-\mathrm{H}\right.$ of $\left.\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right), 2.20\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.12[9 \mathrm{H}, \mathrm{dt}$, $\left.{ }^{3} J(\mathrm{PH}) 17.6,{ }^{3} J(\mathrm{HH}) 7.6, \mathrm{CH}_{3}\right]^{g}$

decrease slightly in the order $\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}>$ II $>$ IV. The values of δ_{F} for II and IV are similar to that for $\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3}\right.$ -$\left.\mathrm{F}_{2}-2,6\right)_{3}$ of $\delta-126.50$.

Treatment of $\left[\left\{\mathrm{RhCl}(\mu-\mathrm{Cl})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right\}_{2}\right]$ with phosphonites I and II and phosphinites III and IV in refluxing benzene yielded $\left[\mathrm{RhCl}_{2} \mathrm{~L}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]\left[\mathrm{L}=\mathrm{PPh}(\mathrm{OPh})_{2} \mathbf{1}, \mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2}\right.$ 2, $\mathrm{PPh}_{2}(\mathrm{OPh}) 3$ or $\left.\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right) 4\right]$ as air-stable, red or orange microcrystalline solids (Scheme 2). The complexes were characterized by elemental analysis, mass, NMR and IR spectroscopies. The analytical, mass and ${ }^{1} \mathrm{H}$ NMR spectral data are given in Table 1 , the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data in Table 2. Complexes $\mathbf{1}$ and $\mathbf{4}$ have been further characterized by single-crystal X-ray diffraction studies.

Treatment of the dinuclear platinum complex $[\{\mathrm{PtCl}(\mu-\mathrm{Cl})-$ $\left.\left(\mathrm{PEt}_{3}\right)\right\}_{2}$] with the phosphonites I and II and the phosphinites III and IV in refluxing acetone yielded complexes of formulation $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]\left[\mathrm{L}=\mathrm{PPh}(\mathrm{OPh})_{2}\right.$ 5, $\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2}$ 6, $\mathrm{PPh}_{2}(\mathrm{OPh}) 7$ or $\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right) 8$. Complexes 5 and 7 occur exclusively as colourless cis isomers, whereas $\mathbf{6}$ and $\mathbf{8}$ occur as both cis and trans isomers. The pale yellow trans isomers 6a and 8a are formed initially, but isomerize in acetone solution over several days at room temperature to give the colourless cis isomers $\mathbf{6 b}$ and $\mathbf{8 b}$ (Scheme 2). It has also been found that trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right]$ isomerizes in acetone over several weeks. ${ }^{13}$ It is thus apparent that the cis isomers are thermodynamically preferred for this series of complexes.

Table 2 The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data for $\left[\mathrm{RhCl}_{2} \mathrm{~L}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$ complexes ${ }^{a}$

L	$\delta_{\text {P }}$	${ }^{1} J(\mathrm{RhP}) / \mathrm{Hz}$	$\delta_{\text {F }}$	${ }^{4} J(\mathrm{PF}) / \mathrm{Hz}$
$\mathrm{P}(\mathrm{OPh})_{3}{ }^{\text {b }}$	+104.2	240	-	-
$\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right)_{3}{ }^{\text {b }}$	+111.5	239.5	-124.80	2.0
$\mathrm{PPh}(\mathrm{OPh})_{2}(\mathbf{1})$	+140.5	200	-	-
$\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right)_{2}(\mathbf{2})$	+151.0	205	-121.28	3.0
$\mathrm{PPh}_{2}(\mathrm{OPh})(3)$	+113.5	170.5	-	-
$\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right)(4)$	+128.0	173	-119.27	3.0
$\mathrm{PPh}_{3}{ }^{\text {c }}$	+7.9	144	-	-

(No evidence for the formation of the trans isomers of 5 and 7 was obtained when the reactions between $\left[\left\{\mathrm{PtCl}(\mu-\mathrm{Cl})\left(\mathrm{PEt}_{3}\right)\right\}_{2}\right]$ and I and III were monitored by NMR spectroscopy.) The existence of trans isomers for the fluorine-containing ligands, but not for the perprotio ligands, is indicative of a significant steric influence exerted by the fluorine atoms in the ortho positions of the phenoxy rings. Complexes 5-8 were characterized by mass, NMR and IR spectroscopies. Elemental analyses were obtained for the cis complexes. The analytical, mass and ${ }^{1} \mathrm{H}$ NMR spectral data are presented in Table 1, the ${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic data in Table 3. The geometries of the compounds were determined from their ${ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic data and for complexes $\mathbf{6 a}, \mathbf{6 b}, 7,8 \mathbf{a}$

Table 3 The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data for $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$ complexes ${ }^{a}$
$\left.\begin{array}{lrlllll}\mathrm{L} & \delta_{\mathrm{P}} & { }^{1} J(\mathrm{PtP}) / \mathrm{Hz} & { }^{2} J(\mathrm{PP}) / \mathrm{Hz} & \delta_{\mathrm{F}} & { }^{4} J(\mathrm{PF}) / \mathrm{Hz} & { }^{5} J(\mathrm{PtF}) / \mathrm{Hz} \\ \mathrm{P}(\mathrm{OPh})_{3}{ }^{b} & +62.7 & 6261\end{array}\right)$
${ }^{a}$ Values for the PEt_{3} ligand are given in parentheses. ${ }^{b}$ Ref. 18. ${ }^{c}$ Recorded in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} .{ }^{d}$ Ref. $12 .{ }^{e}$ Recorded in $\mathrm{CDCl}_{3} .{ }^{f}$ Ref. 13.

$1 x=1, \quad \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$
$x-1, R=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6$
$4 x=2, \quad \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6$

Scheme 2 (i) $\left[\left\{\mathrm{RhCl}(\mu-\mathrm{Cl})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right\}_{2}\right], \mathrm{C}_{6} \mathrm{H}_{6}$, heat; (ii) $[\{\mathrm{PtCl}(\mu-$ $\left.\mathrm{Cl})\left(\mathrm{PEt}_{3}\right)\right\}_{2}$], acetone, heat, 10 min ; (iii) acetone, several weeks $(x=1)$ or days $(x=2)$
and $\mathbf{8 b}$ were confirmed by single-crystal X-ray diffraction studies.

Phosphorus-31 and ${ }^{19}$ F NMR studies

The ${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopic data for complexes $\mathbf{1 - 4}$ are given in Table 2, together with those for $\left[\mathrm{RhCl}_{2}\left(\mathrm{PR}_{3}\right)\left(\eta^{5}\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]\left(\mathrm{R}=\mathrm{OPh}, \mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right.$ or Ph$)$ for comparison. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra exhibit doublet resonances. The values of $\delta_{\mathbf{P}}$ for $\mathbf{1}$ and $\mathbf{2}$ are $c a .20$ and 30 ppm respectively to higher frequency of those of the free phosphonites, whereas those for 3 and 4 are similar to those for III and IV. The values of $\delta_{\mathbf{P}}$ thus show the same variation with the number of phenoxy groups as do those of the free phosphines. The values for $\mathbf{1}$ and $\mathbf{2}$ differ by $c a .10 \mathrm{ppm}$ and those of $\mathbf{3}$ and $\mathbf{4}$ differ by $c a .15 \mathrm{ppm}$, with the resonances of those comprising the fluorine-containing ligands
being at higher frequency than those of the respective perprotio analogue. The absolute values of the coupling constants ${ }^{1} J(\mathrm{RhP})$ are intermediate between those for $\left[\mathrm{RhCl}_{2}\left(\mathrm{PPh}_{3}\right)\right.$ -$\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]^{17}$ and $\left[\mathrm{RhCl}_{2}\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]{ }^{12}$ and follow the trend $\left[\mathrm{RhCl}_{2}\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right] \approx$ $\left[\mathrm{RhCl}_{2}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]>\mathbf{1} \approx \mathbf{2}>\mathbf{3} \approx \mathbf{4}>\left[\mathrm{RhCl}_{2}\left(\mathrm{PPh}_{3}\right)-\right.$ $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$]. The order phosphite $>$ phosphonite $>$ phosphinite $>$ phosphine is that anticipated from the greater electronegativity of the phenoxy group compared to that of the phenyl group. ${ }^{16}$ Thus it appears that in the ${ }^{31} \mathrm{P}$ NMR spectrum the value ${ }^{1} J(\mathrm{RhP})$ is indicative of the electronic nature of the phosphorus atom, whilst the value of δ_{P} is not. Furthermore, since the values of ${ }^{1} J(\mathrm{RhP})$ for $\mathbf{1}$ and 2 and for $\mathbf{3}$ and $\mathbf{4}$ are very similar, substitution of hydrogen for fluorine in the ortho sites of the phenoxy rings of $\mathrm{PPh}(\mathrm{OPh})_{2}$ and $\mathrm{PPh}_{2}(\mathrm{OPh})$ does not significantly alter the electronic properties of the phosphorus in such complexes. The ${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra indicate that the values of δ_{F}, in contrast to those of δ_{P}, are sensitive to changes in the nature of the ligand and vary in a regular fashion, i.e. 2 and 4 exhibit doublets, which are shifted to higher frequency from those of the compounds II and IV, with that of $\mathbf{4}$ occurring at higher frequency than that of 2, which, in turn, is at higher frequency than that of $\left[\mathrm{RhCl}_{2}\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$. ${ }^{12}$ The values of ${ }^{4} J(\mathrm{PF})$ are considerably smaller than those for the free phosphines, as is found for transition-metal complexes of $\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3} .^{11-13}$ No rhodium-fluorine coupling is observed in the spectra. Presumably the values of ${ }^{5} J(\mathrm{RhF})$ are too small to be resolved.

The ${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$ NMR data for complexes $5-\mathbf{8}$ are presented in Table 3, together with those for cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]^{18}$ and cis- and trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}_{(}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right]^{12,13}$ for comparison. A direct quantitative comparison of the NMR spectroscopic data cannot be made since the perprotio complexes are soluble in chloroform, but only sparingly so in acetone, whilst the fluorine-containing compounds are soluble in acetone, but virtually insoluble in chloroform. However, $\mathbf{6 b}$ is sufficiently soluble in chloroform to allow the NMR spectra to be recorded, and the differences between the values of the chemical shifts and the coupling constants in the two solvents are small (Tables 1 and 3). In particular, $\delta_{\mathbf{P}}$ is $c a .5 \mathrm{ppm}$ to lower frequency and the magnitude of ${ }^{1} J(\mathrm{PtP})$ is $<1 \%$ larger in chloroform than in acetone. Thus, the effects of the solvent on these values can be assumed to be small.

The value of δ_{P} for the phosphonite resonance of the trans complex $6 \mathbf{a}$ is $c a .50 \mathrm{ppm}$ to lower frequency of that of the free phosphonite II, whereas δ_{P} for the phosphinite resonance
of $\mathbf{8 a}$ is only $c a .15 \mathrm{ppm}$ to lower frequency of that of IV. The values for the PEt_{3} resonance are similar, increasing slightly in the order trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}_{(}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right]>$ $\mathbf{6 a}>\mathbf{8 a}$. The absolute values of the phosphorus-phosphorus couplings, ${ }^{2} J(\mathrm{PP})$, decrease regularly in the order trans- $\left[\mathrm{PtCl}_{2}-\right.$ $\left.\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right]>\mathbf{6 a}>\mathbf{8 a}$ from 713 Hz by ca. 100 Hz for each successive substitution of a $\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6$ group for a phenyl group. The relatively high magnitudes are characteristic of trans complexes. The absolute values of the platinum-phosphorus couplings, ${ }^{1} J(\mathrm{PtP})$, for the phosphite, phosphonite and phosphinite resonances also decrease regularly in the order trans $-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right]>\mathbf{6 a}>$ 8a from 4126 Hz by $c a .650 \mathrm{~Hz}$ for each successive substitution of a $\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6$ group for a phenyl group. Absolute values for the $\mathrm{Pt}-\mathrm{PEt}_{3}$ coupling decrease in the same order, but by a smaller amount. The values of ${ }^{1} J(\mathrm{PtP})$ are also consistent with trans complexes. The values of δ_{F} and ${ }^{4} J(\mathrm{PF})$ are similar within the series, but the absolute values of ${ }^{5} J(\mathrm{PtF})$ vary in the order trans-[$\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}_{\left.\left.\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right]>}\right.$ $\mathbf{8 a}>6$.

The values of δ_{P} for the phosphite, phosphonite and phosphinite resonances for the cis complexes vary as those for the ligands and are at lower frequency than those of the trans complexes. For the PEt_{3} resonance the values of δ_{P} show little variation between the complexes. The phosphorus-phosphorus couplings, ${ }^{2} J(\mathrm{PP})$, have absolute values that are an order of magnitude lower than those of the respective trans complexes and show no discernible regular variation. The magnitude of the platinum-phosphorus coupling, ${ }^{1} J(\mathrm{PtP})$, for the phosphite, phosphonite and phosphinite resonances decreases in the order cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}_{(}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right]^{13} \approx c i s-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)-\right.$ $\left.\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]^{18}>\mathbf{5} \approx \mathbf{6 b}>\mathbf{7} \approx \mathbf{8 b}$ from 6389 by $c a .800 \mathrm{~Hz}$ on each successive substitution of a $\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{X}_{2}-2,6(\mathrm{X}=\mathrm{H}$ or F$)$ group for a phenyl group. The values for the fluorine-containing complexes are slightly larger than those for the respective perprotio analogues and are ca. 1800 Hz larger than for the respective trans complexes. The absolute values for the $\mathrm{Pt}-\mathrm{PEt}_{3}$ coupling are all between 3000 and 3500 Hz , and show no regular trend. The values of δ_{F} for the cis complexes are at higher frequency than those of the trans complexes by $2-4 \mathrm{ppm}$. The absolute values of ${ }^{4} J(\mathrm{PF})$ are similar and are $c a .2 \mathrm{~Hz}$ smaller than those of the trans complexes. The absolute values of ${ }^{5} J(\mathrm{PtF})$ vary in the order cis-[$\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}_{(}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-\right.\right.$ $\left.\left.2,6)_{3}\right\}\right] \approx \mathbf{8 b}>\mathbf{6 b}$ and are $c a .10 \mathrm{~Hz}$ larger than those of the respective trans complexes. Thus ${ }^{1} J(\mathrm{PtP})$ and ${ }^{5} J(\mathrm{PtF})$ are larger for the cis complexes, whereas ${ }^{2} J(\mathrm{PP})$ and ${ }^{4} J(\mathrm{PF})$ are larger for the trans complexes. Within the series of cis and trans complexes two trends are observed in the coupling constants and chemical shifts: ${ }^{1} J(\mathrm{PtP})$ and ${ }^{2} J(\mathrm{PP})$ decrease regularly as $\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{X}_{2}(\mathrm{X}=\mathrm{H}$ or F$)$ groups are replaced by phenyl groups, whereas ${ }^{4} J(\mathrm{PF})$ and ${ }^{5} J(\mathrm{PtF})$ vary with the ligands $\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-\right.$ $2,6)_{3} \approx \mathbf{I V}>\mathbf{I I}$, which is the inverse of the variation of δ_{P}. The variation in δ_{P} between the fluorine-containing complexes and their respective perprotio analogues is similar to that observed for the $\left[\mathrm{RhCl}_{2} \mathrm{~L}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$ complexes. The resonance for the fluorine-containing complex is shifted to higher frequency relative to that of the perprotio analogue, but the magnitude of the metal-phosphorus coupling constant is similar. The same trends in ${ }^{1} J(\mathrm{PtP})$ are observed as in ${ }^{1} J(\mathrm{RhP})$. Also, δ_{F} is shifted to higher frequency as $\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{X}_{2}(\mathrm{X}=\mathrm{H}$ or F$)$ groups are replaced by phenyl groups. It is evident that the magnitude of ${ }^{1} J(\mathrm{MP})$ within the three series of complexes increases with increasing number of phenoxy groups. This is consistent with the magnitude of ${ }^{1} J(\mathrm{MP})$ increasing with increasing electronegativity of the substituents on the phosphorus atom. ${ }^{16}$ The similarity of ${ }^{1} J(\mathrm{MP})$ for the perprotio complexes and their fluorine-containing analogues in the series $\left[\mathrm{RhCl}_{2} \mathrm{~L}\left(\eta^{5}\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$ and $c i s-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$ shows that the presence of fluorine in the ortho positions of the phenoxy rings has a negligible electronic effect.

Table 4 Selected bond distances (\AA) and angles (${ }^{\circ}$) with estimated standard deviations (e..s.d.s) in parentheses about rhodium for $\left[\mathrm{RhCl}_{2} \mathrm{~L}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$ complexes $\left[\mathrm{L}=\mathrm{PPh}(\mathrm{OPh})_{2} \mathbf{1}\right.$ and $\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-\right.$ 2,6) 4]*

	Molecule 1	Molecule 2	$\mathbf{4}$
$\mathrm{Rh}-\mathrm{P}$	$2.258(3)$	$2.254(3)$	$2.301(3)$
$\mathrm{Rh}-\mathrm{Cl}(1)$	$2.389(4)$	$2.378(3)$	$2.401(3)$
$\mathrm{Rh}-\mathrm{Cl}(2)$	$2.412(4)$	$2.391(4)$	$2.406(4)$
$\mathrm{Cp}-\mathrm{Rh}$	$1.824(13)$	$1.822(15)$	$1.827(1)$
$\mathrm{Rh}-\mathrm{C}(1)$	$2.221(13)$	$2.251(14)$	$2.187(12)$
$\mathrm{Rh}-\mathrm{C}(2)$	$2.208(12)$	$2.206(13)$	$2.181(13)$
$\mathrm{Rh}-\mathrm{C}(3)$	$2.16(2)$	$2.147(14)$	$2.222(12)$
$\mathrm{Rh}-\mathrm{C}(4)$	$2.171(12)$	$2.15(2)$	$2.229(13)$
$\mathrm{Rh}-\mathrm{C}(5)$	$2.174(13)$	$2.15(2)$	$2.136(13)$
$\mathrm{P}-\mathrm{Rh}-\mathrm{Cl}(1)$	$92.36(13)$	$92.57(12)$	$86.4(1)$
$\mathrm{P}-\mathrm{Rh}-\mathrm{Cl}(2)$	$89.25(12)$	$90.99(13)$	$94.4(1)$
$\mathrm{Cl}-\mathrm{Rh}-\mathrm{Cl}$	$89.6(2)$	$88.4(2)$	$92.3(1)$
$\mathrm{Cp} \mathrm{p}^{*}-\mathrm{Rh}-\mathrm{P}$	$129.1(4)$	$127.8(4)$	$130.85(10)$
$\mathrm{Cp} \mathrm{p}^{*}-\mathrm{Rh}-\mathrm{Cl}$	$121.7(4)$	$124.5(4)$	$124.2(1)$
	$123.9(4)$	$121.7(5)$	$118.5(1)$

* Cp * denotes the cyclopentadienyl centroid.

Fig. 1 Molecular structure of one of the independent molecules of $\left[\mathrm{RhCl}_{2}\left\{\mathrm{PPh}(\mathrm{OPh})_{2}\right\}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$ 1. Displacement ellipsoids are shown at the 30% probability level. The hydrogen atoms are omitted for clarity

Single-crystal X-ray diffraction studies

Selected bond distances and angles about the rhodium atom for complexes $\mathbf{1}$ and $\mathbf{4}$ are given in Table 4. Complex $\mathbf{1}$ crystallizes with two independent molecules in the unit cell, but the geometries of the two molecules are very similar. Both 1 (Fig. 1) and 4 (Fig. 2) display three-legged piano-stool geometries about the metal atom, similar to that of $\left[\mathrm{IrCl}_{2}\left\{\mathrm{P}_{(}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right.$ -$\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right],{ }^{11}$ with the $\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$ and $\mathrm{P}-\mathrm{Rh}-\mathrm{Cl}$ angles being $c a$. 90°. The geometry of the ligands about the $\mathrm{Cp}^{*}-\mathrm{Rh}$ axis is distorted from pseudo- $C_{3 v}$ symmetry with the $\mathrm{Cp}^{*}-\mathrm{Rh}-\mathrm{P}$ angles significantly greater than those of $\mathrm{Cp}^{*}-\mathrm{Rh}-\mathrm{Cl}$. The $\mathrm{Cp}^{*}-\mathrm{Rh}$ distances of the two molecules of $\mathbf{1}$ are the same within experimental error and are similar to that of $\mathbf{4}$. The two molecules of 1 possess one shorter and one longer $\mathrm{Rh}-\mathrm{Cl}$ bond, with those of one molecule being significantly longer than those of the other. The $\mathrm{Rh}-\mathrm{Cl}$ bond lengths of $\mathbf{4}$ are the same within experimental error and comparable to those of $\mathbf{1}$.

Table 5 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.s in parentheses about platinum for trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]\left[\mathrm{L}=\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right.$, $\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2} \mathbf{6 a}$ or $\left.\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right) 8 \mathrm{8a}\right]$
$\left.\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2}\right)(6 a)$

	$\mathrm{L}=\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}{ }^{*}$
${\mathrm{Pt}-\mathrm{PPh}_{x}(\mathrm{OR})_{3-x}}^{2.243(2)}$	
$\mathrm{Pt}-\mathrm{PEt}_{3}$	$2.304(3)$
$\mathrm{Pt}-\mathrm{Cl}$	$2.296(2)$
	$2.300(3)$
$\mathrm{P}-\mathrm{Pt}-\mathrm{P}$	$175.1(1)$
$\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cl}$	$175.5(1)$
$\mathrm{Cl}-\mathrm{Pt}-\mathrm{PPh}_{x}(\mathrm{OR})_{3-x}$	$93.1(1)$
$\mathrm{Cl}-\mathrm{Pt}-\mathrm{PEt}_{3}$	$87.8(1)$
	$89.6(1)$
	$89.9(1)$

Molecule 1	Molecule 2	$\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)(\mathbf{8 a})$
$2.267(2)$	$2.267(4)$	$2.275(5)$
$2.321(4)$	$2.319(4)$	$2.308(6)$
$2.291(4)$	$2.285(4)$	$2.291(6)$
$2.310(4)$	$2.305(4)$	$2.312(6)$
$177.2(1)$	$175.2(1)$	$176.1(2)$
$175.3(1)$	$176.0(2)$	$177.5(2)$
$90.7(1)$	$92.3(1)$	$92.0(2)$
$90.0(1)$	$87.7(1)$	$89.2(2)$
$90.3(1)$	$91.0(1)$	$87.4(2)$
$88.8(1)$	$89.2(1)$	$91.6(2)$

* Ref. 12.

Fig. 2 Molecular structure of $\left[\mathrm{RhCl}_{2}\left\{\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)\right\}\left(\eta^{5}-\right.\right.$ $\mathrm{C}_{5} \mathrm{Me}_{5}$)] 4. Details as in Fig. 1

The two independent molecules of complex $\mathbf{1}$ possess $\mathrm{Rh}-\mathrm{P}$ bond lengths which are the same within experimental error, and are $c a .0 .04 \AA$ shorter than that of 4 . Three factors may be important in determining this distance. First, the electronic influence of the fluorine in the ligands. Values of ${ }^{1} J(\mathrm{RhP})$ show this to be negligible, and comparison of the crystal structures of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]^{19}$ and cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}_{\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-\right.}\right.\right.$ $\left.\left.2,6)_{3}\right\}\right]^{13}$ indicates that this has no effect upon the $\mathrm{Pt}-\mathrm{P}(\mathrm{OR})_{3}$ bond lengths. Secondly, the steric influence of the fluorine atoms, which would tend to increase the M-P distances for the complexes comprising fluorine-containing ligands. However, the similarity of the $\mathrm{Pt}-\mathrm{P}(\mathrm{OR})_{3}$ distances in cis $-\left[\mathrm{PtCl}_{2}-\right.$ $\left.\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]$ and $c i s-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right]$ suggests that steric differences in these ligands, induced by the presence of fluorine, is not dominant in determining the lengths of the $\mathrm{Pt}-\mathrm{P}$ bonds. The structural data, therefore, suggest that the steric influence of the fluorine atoms has a small effect on M-P bond lengths. Thirdly, the π-bonding ability of the ligands. For phosphites this is greater than for phosphines and is manifested in shorter metal-phosphite bonds. ${ }^{20}$ The π-bonding abilities of phosphonites and phosphinites are expected to be intermediate between those of phosphites and phosphines and follow the order $\mathrm{P}(\mathrm{OR})_{3}>\mathrm{PPh}(\mathrm{OR})_{2}>\mathrm{PPh}_{2}(\mathrm{OR})>\mathrm{PPh}_{3}$. The $\mathrm{M}-\mathrm{P}$ bond lengths of $\mathbf{1}$ and $\mathbf{4}$ are consistent with this series, and

Fig. 3 Molecular structure of one of the independent molecules of trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right\}_{2}\right]\right.$ 6a. Details as in Fig. 1
it seems likely that it is this factor which dominates in determining the lengths of their $\mathrm{Rh}-\mathrm{P}$ bonds. It is noted that the $\mathrm{Rh}-\mathrm{P}$ bond distance of the rhodium complex 4 is $c a .0 .04 \AA$ longer than that of $\left[\operatorname{IrCl}_{2}\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$, ${ }^{11}$ which is consistent with the π-bonding ability of the ligands and further suggests that the steric influence of the fluorine atoms on the $\mathrm{M}-\mathrm{P}$ bond lengths is not dominant. However, it should be noted that the Ir-P bonds are $c a .0 .04 \AA$ shorter than the $\mathrm{Rh}-\mathrm{P}$ bonds in the complexes $\left[\mathrm{MCl}\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}\right.$ -$\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]^{+} \mathrm{BF}_{4}{ }^{-}(\mathrm{M}=\mathrm{Rh}$ or Ir$) .{ }^{10}$

Selected bond distances and angles about platinum for the trans complexes 6a, 8a and, for comparison, $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right]^{12}$ are given in Table 5. (It should be noted that the crystal structure shows that trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right]$ possesses short intermolecular $\mathrm{H} \cdots \mathrm{F}$ distances.) The structure of complex $\mathbf{6 a}$ (Fig. 3) possesses two independent molecules in the unit cell; 8a crystallizes with 0.75 molecules of water per molecule of complex (Fig. 4). The complexes possess square-planar geometries with $\mathrm{X}-\mathrm{Pt}-\mathrm{X}$ trans angles of $175.1(1)-177.5(2)^{\circ}$ and $\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}$ cis angles of 87.7(1)93.1(1) ${ }^{\circ}$. The $\mathrm{Pt}^{2}-\mathrm{PPh}_{x}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3-x}$ distances decrease in the order $\mathbf{8 a}>\mathbf{6} \mathbf{a}>$ trans $-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right]$. This is consistent with the π-bonding ability of the ligands. The $\mathrm{Pt}-\mathrm{PEt}_{3}$ distances do not show the reciprocal variation and decrease in the order $\mathbf{6 a}>\mathbf{8 a} \approx$ trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}_{\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-\right.}\right.\right.$ $\left.\left.2,6)_{3}\right\}\right]$. The complexes possess one $\mathrm{Pt}-\mathrm{Cl}$ bond distance of $c a$. $2.30 \AA$ or longer and one of less than $2.30 \AA$.

Selected bond distances and angles about platinum for the cis

Table 6 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.s in parentheses about platinum for cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]\left[\mathrm{L}=\mathrm{P}(\mathrm{OPh})_{3}, \mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right.$, $\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2} \mathbf{6 b}, \mathrm{PPh}_{2}(\mathrm{OPh}) 7$ or $\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right) \mathbf{8 b}$]

	$\mathrm{L}=\mathrm{P}(\mathrm{OPh})_{3}{ }^{\text {a }}$	$\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}{ }^{\text {b }}$	$\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2}(\mathbf{6 b})$	$\mathrm{PPh}_{2}(\mathrm{OPh})(7)$	$\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)(\mathbf{8 b})$
$\mathrm{Pt}^{-\mathrm{PPh}_{x}}(\mathrm{OR})_{3-x}$	2.182(2)	$2.1772(14)$	2.1819(13)	2.215(2)	2.2096(13)
$\mathrm{Pt}-\mathrm{PEt}_{3}$	2.269(1)	2.274(2)	2.271(2)	2.252(2)	2.2550 (14)
$\mathrm{Pt}-\mathrm{Cl}\left[\right.$ trans $\left.-\mathrm{PPh}_{x}(\mathrm{OR})_{3-x}\right]$	2.344(2)	$2.3248(14)$	2.3488 (14)	2.338(2)	2.343(2)
$\mathrm{Pt}-\mathrm{Cl}\left(\right.$ trans $\left.-\mathrm{PEt}_{3}\right)$	$2.355(2)$	$2.3616(14)$	2.346 (2)	2.359(2)	2.3639(13)
$\mathrm{P}-\mathrm{Pt}-\mathrm{P}$	97.9(1)	103.14(6)	102.05(5)	97.29(6)	97.57(5)
$\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cl}$	87.4(1)	88.61(5)	88.81(6)	87.58(6)	87.38(5)
$\mathrm{Cl}-\mathrm{Pt}-\mathrm{PPh}_{x}(\mathrm{OR})_{3-x}$ (trans)	172.3(1)	171.52(5)	170.06(5)	170.14(6)	169.92(5)
(cis)	88.6(1)	83.66(5)	82.80(5)	83.02(6)	82.77(5)
$\mathrm{Cl}-\mathrm{Pt}-\mathrm{PEt}_{3}($ trans $)$	171.6(1)	172.16(5)	174.31(5)	177.50(6)	178.49(5)
(cis)	86.7(1)	84.61(6)	86.62(6)	92.33(6)	92.33(5)

${ }^{a}$ Ref. 19. ${ }^{b}$ Ref. 13.

Fig. 4 Molecular structure of trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-\right.\right.\right.$ $2,6)\}] \cdot 0.75 \mathrm{H}_{2} \mathrm{O} 8 \mathrm{a} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$. Details as in Fig. 1

Fig. 5 Molecular structure of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right\}_{2}\right]\right.$ 6b. Details as in Fig. 1
complexes $\mathbf{6 b}, \mathbf{7}, \mathbf{8 b}$ and, for comparison, cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right]^{13}$ and cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]^{19}$ are given in Table 6 and the structures of $\mathbf{6 b}, 7$ and $\mathbf{8 b}$ are shown in Figs. 5, 6 and 7 respectively. The $\mathrm{Pt}-\mathrm{Cl}, \mathrm{Pt}-\mathrm{P}$ and $\mathrm{P}-\mathrm{O}$ bond lengths of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}_{(}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right]$ and cis- $\left[\mathrm{PtCl}_{2}-\right.$ $\left.\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]$ are within $0.01 \AA$ of each other, and thus we

Fig. 6 Molecular structure of $c i s-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}_{2}(\mathrm{OPh})\right\}\right]$ 7. Details as in Fig. 1

Fig. 7 Molecular structure of cis $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)\right\}\right]$ 8b. Details as in Fig. 1
may infer that the presence of fluorine in the ortho positions of the phenoxy groups has a negligible effect upon these distances. Thus, the $\mathrm{Pt}-\mathrm{Cl}, \mathrm{Pt}-\mathrm{P}$ and $\mathrm{P}-\mathrm{O}$ bond lengths of 7 may be compared directly with those of $\mathbf{6 b}$ and cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}\left(\mathrm{OC}_{6}-\right.\right.\right.$ $\left.\left.\mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}$]. The $\mathrm{Pt}-\mathrm{PPh}_{x}(\mathrm{OR})_{3-x}$ bond lengths decrease in the order $\mathbf{7} \approx \mathbf{8 b}>\mathbf{6 b} \approx$ cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right] \approx$ cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]$ consistent with the trend observed for the trans complexes and the π-bonding ability of the ligands.

Table 7 Selected bond distances (\AA) and bond and torsion angles $\left({ }^{\circ}\right)$ with e.s.d.s in parentheses for complexes of the phosphonites $\mathrm{PPh}(\mathrm{OPh})_{2}(\mathbf{1})$ and $\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2}$ (6)

	1		6 a		6b
	Molecule 1	Molecule 2	Molecule 1	Molecule 2	
$\mathrm{P}-\mathrm{O}(1)$	$1.608(9)$	1.614(9)	1.612(9)	1.619(10)	1.616(4)
$\mathrm{P}-\mathrm{O}(2)$	$1.623(9)$	1.567(10)	1.621(8)	$1.615(9)$	1.607(4)
$\mathrm{P}-\mathrm{C}$	1.792(12)	1.837(12)	1.808(12)	1.782(13)	1.798(5)
$\mathrm{O}(1)-\mathrm{C}$	1.401(14)	$1.399(14)$	1.374(13)	1.362(15)	1.390(6)
$\mathrm{O}(2)-\mathrm{C}$	1.40 (2)	1.40(2)	1.377(14)	1.381(16)	1.377(6)
$\mathrm{C}-\mathrm{CO}(1)$	1.35(2)	1.38(2)	1.368(17)	1.378(19)	1.354(8)
	1.38(2)	1.40(2)	1.376(18)	1.363(20)	1.374(8)
$\mathrm{C}-\mathrm{CO}(2)$	1.35(2)	1.34(2)	1.387(18)	$1.465(27)$	1.370(8)
	1.35(2)	1.39(2)	$1.359(20)$	1.321(29)	1.360(9)
C-F	-	-	1.341(17)	1.327(19)	1.356(7)
	-	-	1.346(15)	1.330(16)	1.329(8)
	-	-	1.375(18)	1.288(27)	1.352(8)
	-	-	1.325(16)	1.247(32)	1.337(8)
$\mathrm{M}-\mathrm{P}-\mathrm{O}(1)$	112.1(3)	112.7(3)	119.4(3)	114.0(4)	115.0(2)
$\mathrm{P}-\mathrm{O}(1)-\mathrm{C}$	123.6(8)	123.5(8)	128.1(7)	124.6(9)	124.3(3)
$\mathrm{M}-\mathrm{P}-\mathrm{O}(2)$	117.2(3)	117.1(4)	112.0(3)	112.8(4)	117.54(1)
$\mathrm{P}-\mathrm{O}(2)-\mathrm{C}$	129.7(9)	130.2(11)	123.8(7)	124.6(8)	126.0(3)
M-P-C	119.5(4)	116.4(4)	115.6(5)	119.4(5)	116.2(2)
$\mathrm{O}-\mathrm{P}-\mathrm{O}$	104.7(5)	107.9(5)	103.5(4)	103.4(5)	101.3(2)
$\mathrm{C}-\mathrm{P}-\mathrm{O}(1)$	104.6(5)	106.1(6)	98.7(5)	100.2(6)	103.2(2)
$\mathrm{C}-\mathrm{P}-\mathrm{O}(2)$	96.7(5)	95.0(6)	105.0(5)	105.1(5)	101.6(2)
$\mathrm{O}(1)-\mathrm{C}-\mathrm{C}$	122.5(12)	122.0(12)	125.4(11)	125.3(12)	120.0(5)
	117.0(13)	119.5(14)	117.8(10)	118.0(12)	122.5(5)
$\mathrm{C}-\mathrm{C}[\mathrm{O}(1)]-\mathrm{C}$	120.6(14)	118.4(13)	116.7(11)	116.6(12)	117.3(6)
$\mathrm{O}(2)-\mathrm{C}-\mathrm{C}$	115(2)	112(2)	120.5(12)	116.0(14)	122.3(5)
	121(2)	125(2)	122.4(11)	123.5(17)	119.7(6)
$\mathrm{C}-\mathrm{C}[\mathrm{O}(2)]-\mathrm{C}$	124(2)	123(2)	116.8(12)	120.5(16)	117.7(6)
$\mathrm{C}(\mathrm{O})-\mathrm{C}-\mathrm{F}$	-	-	117.5(12)	116.7(12)	117.4(5)
	-	-	119.0(11)	117.5(13)	118.2(6)
	-	-	116.6(12)	115.4(15)	117.0(6)
	-	-	119.7(12)	121.7(18)	118.3(7)
$\mathrm{M}-\mathrm{P}-\mathrm{O}-\mathrm{C}$	-168.8	171.8	24.3	-17.0	149.0
	-58.3	80.7	173.7	-154.5	3.1

The $\mathrm{Pt}-\mathrm{PEt}_{3}$ bond lengths increase in the order $7 \approx \mathbf{8 b}<$ $\mathbf{6 b} \approx c i s-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}_{\left.\left.\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right] \approx c i s-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)-\right.}\right.\right.$ $\left.\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]$. The $\mathrm{Pt}-\mathrm{Cl}$ bond lengths do not show a regular variation. For complexes 7, 8b, cis-[$\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}_{(}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-\right.\right.$ $\left.\left.2,6)_{3}\right\}\right]$ and cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right.$ the $\mathrm{Pt}-\mathrm{Cl}\left(\right.$ trans to $\left.\mathrm{PEt}_{3}\right)$ bond is significantly longer than $\mathrm{Pt}-\mathrm{Cl}\left[\right.$ trans to $\left.\mathrm{PPh}_{x}(\mathrm{OR})_{3-x}\right]$, but for $\mathbf{6 b}$ the two bond lengths are essentially identical. The $\mathrm{P}-\mathrm{O}$ bond lengths decrease in the order $7 \approx \mathbf{6 b}>c i s-\left[\mathrm{PtCl}_{2}-\right.$ $\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}_{\left.\left.\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right] \approx c i s-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right] \quad \text { con- }}\right.$ sistent with the $\mathrm{P}-\mathrm{O}$ bond lengths in the trans complexes. The $\mathrm{Pt}-\mathrm{PPh}_{x}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3-x}$ distances are considerably shorter for the cis than for the analogous trans complexes, consistent with triethylphosphine exerting a stronger trans influence than chloride. ${ }^{18}$ The trans $\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}$ angles lie in the range 169.92(5)$178.49(5)^{\circ}$. The values of $\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cl}$ are similar for the complexes, lying in the range 87.38(5)-88.81(6) ${ }^{\circ}$. The $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angles are, however, strongly affected by the presence of fluorine in the ligands. The $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle for cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}_{(}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-\right.\right.\right.$ $\left.\left.2,6)_{3}\right\}\right]$ is significantly larger than that of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)-\right.$ $\left.\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]$, which may be ascribed solely to the greater steric pressure of the fluorine atoms in $\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}$. The $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle of $\mathbf{6 b}$ is similar to that of $c i s-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-\right.\right.\right.$ $\left.\left.2,6)_{3}\right\}\right]$ and that of 7 is similar to that of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)-\right.$ $\left.\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]$. The $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle of $\mathbf{8 b}$ is, however, virtually identical to that of 7, indicating that the steric influence of only two fluorine atoms on this angle is small.

Selected bond lengths and angles for the phosphonite ligands in complexes 1, $\mathbf{6 a}$ and $\mathbf{6 b}$ are given in Table 7. The P-O distances for complexes are the same within experimental error, except for one considerably shorter distance in one of the unique molecules of $\mathbf{1}$. The $\mathrm{P}-\mathrm{C}$ distances lie in the range
$1.782(13)-1.837(12) \AA$ and the $\mathrm{O}-\mathrm{C}$ distances lie in the range $1.362(15)-1.401(14) \AA$. The $\mathrm{P}-\mathrm{O}-\mathrm{C}$ angles for both the $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2}\right\}\right]$ complexes lie in the range $123.8(7)-128.1(7)^{\circ}$, whereas each unique molecule of 1 possesses one $\mathrm{P}-\mathrm{O}-\mathrm{C}$ angle of $c a .123 .5^{\circ}$ and another of $c a .130^{\circ}$. The $\mathrm{M}-\mathrm{P}-\mathrm{O}$ and $\mathrm{M}-\mathrm{P}-\mathrm{C}$ angles for all three complexes lie in the range $112.0(3)-119.5(4)^{\circ}$. Each unique molecule of $\mathbf{1}$ has an $\mathrm{O}-\mathrm{P}-\mathrm{O}$ and one $\mathrm{O}-\mathrm{P}-\mathrm{C}$ angle of $c a .105^{\circ}$ and one $\mathrm{O}-\mathrm{P}-\mathrm{C}$ angle of $c a .96^{\circ}$. The two unique molecules of complex 6a have $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles of $c a .103 .5^{\circ}$, and each molecule has one $\mathrm{O}-\mathrm{P}-\mathrm{C}$ angle of $c a .99^{\circ}$ and the other of $c a .105^{\circ}$. In contrast, the phosphonite ligand of $\mathbf{6 b}$ shows pseudo- $C_{3 v}$ symmetry about the $\mathrm{Pt}-\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2}$ bond with $\mathrm{Pt}-\mathrm{P}-\mathrm{X}$ angles of $c a$. 116.5° and $\mathrm{O}-\mathrm{P}-\mathrm{O}$ and $\mathrm{O}-\mathrm{P}-\mathrm{C}$ angles of 101.3(2)-103.2(2) ${ }^{\circ}$. Thus it appears that the geometry of $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3}-\right.\right.\right.$ $\left.\left.\mathrm{F}_{2}-2,6\right)_{2}\right\}$] does not greatly affect the bond distances within the phosphonite ligand, but does influence the angles about the phosphorus atom. It is interesting that the cis complex, which is the more sterically crowded of the two isomers, displays pseudo- $C_{3 v}$ symmetry about the $\mathrm{Pt}-\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2}$ bond, whilst the trans complex does not. Although there are similarities between some of the distances and angles in the phosphonite ligand of $\mathbf{1}$ and those of $\mathbf{6 a}$ and $\mathbf{6 b}$, direct comparisons between the two ligands may not be valid because they are taken from non-analogous complexes. However, it is noted that the $\mathrm{P}-\mathrm{O}-\mathrm{C}$ and $\mathrm{M}-\mathrm{P}-\mathrm{O}$ angles for $\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2}$ in complexes $6 \mathbf{a}$ and $\mathbf{6 b}$, which are expected to be larger than those of $\mathrm{PPh}(\mathrm{OPh})_{2}$ due to the steric influence of the bulky fluorine atoms, show no discernible increase over the values for 1 . All the complexes possess one $\mathrm{M}-\mathrm{P}-\mathrm{O}-\mathrm{C}$ torsion angle with a magnitude of $150-180^{\circ}$ and another with a magnitude of $0-90^{\circ}$.

Table 8 Selected bond distances (\AA) and bond and torsion angles $\left({ }^{\circ}\right)$ with e.s.d.s in parentheses for complexes of the phosphinites $\mathrm{PPh}_{2}(\mathrm{OPh})$ (7) and $\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)(4,8)$

	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{8 a}$	$\mathbf{8 b}$
P-O	$1.630(4)$	$1.669(9)$	$1.636(14)$	$1.644(4)$
P-C	$1.812(6)$	$1.852(13)$	$1.809(24)$	$1.813(5)$
	$1.799(6)$	$1.814(14)$	$1.778(24)$	$1.812(5)$
O-C	$1.424(7)$	$1.407(16)$	$1.403(27)$	$1.401(6)$
C-C(O)	$1.364(9)$	$1.390(23)$	$1.379(35)$	$1.379(8)$
	$1.356(8)$	$1.381(27)$	$1.398(34)$	$1.371(8)$
C-F	-	$1.345(21)$	$1.369(50)$	$1.353(7)$
	-	$1.278(32)$	$1.333(31)$	$1.339(7)$
M-P-O	$113.2(2)$	$110.9(3)$	$115.8(6)$	$113.72(14)$
P-O-C	$124.0(4)$	$124.6(8)$	$125.0(13)$	$124.1(3)$
M-P-C	$115.2(2)$	$120.5(4)$	$120.9(8)$	$115.0(2)$
	$111.2(2)$	$111.8(4)$	$113.4(8)$	$110.8(2)$
O-P-C	$104.3(3)$	$105.4(5)$	$102.9(9)$	$104.1(2)$
	$103.8(2)$	$101.5(5)$	$98.7(9)$	$103.8(2)$
C-P-C	$108.3(3)$	$104.7(6)$	$102.5(11)$	$108.6(2)$
O-C-C	$117.7(5)$	$118.4(13)$	$122.5(21)$	$122.0(5)$
	$120.4(6)$	$118.6(17)$	$119.9(20)$	$120.6(5)$
C-C(O)-C	$121.8(6)$	$122.7(17)$	$117.5(22)$	$117.3(5)$
C(O)-C-F	-	$117.0(14)$	$117.4(22)$	$118.6(5)$
	-	$123.3(23)$	$117.3(21)$	$117.9(5)$
M-P-O-C	-165.6	-120.1	14.3	-159.0

Selected bond lengths and angles for the phosphinite ligands in complexes 4, 7, 8a and $\mathbf{8 b}$ are given in Table 8. The P-O distances for the $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$ complexes are similar at $c a$. $1.64 \AA$ and the $\mathrm{P}-\mathrm{C}$ distances lie in the range 1.778(24)-1.813(5) \AA. The $\mathrm{O}-\mathrm{C}$ distances for $\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)$ in complexes $\mathbf{8 a}$ and $\mathbf{8 b}$ are the same within experimental error, and the $\mathrm{C}-\mathrm{C}$ (O) distances are similar, whereas the $\mathrm{O}-\mathrm{C}$ distance in 7 is longer and the $\mathrm{C}-\mathrm{C}(\mathrm{O})$ distance shorter than for the $\mathrm{PPh}_{2}-$ $\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)$ complexes. This is consistent with the difference displayed between $\mathrm{P}(\mathrm{OPh})_{3}{ }^{19}$ and $\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}{ }^{13}$ in cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$. The $\mathrm{P}-\mathrm{O}-\mathrm{C}$ angles for the four complexes are all ca. 124-125 . The $\mathrm{Pt}-\mathrm{P}-\mathrm{O}, \mathrm{Pt}-\mathrm{P}-\mathrm{C}, \mathrm{O}-\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles for the cis-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$ complexes, 7 and $\mathbf{8 b}$, are very similar, consistent with the analogous data for cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)-\right.$ $\left.\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]$ and $c i s-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{P}_{\left.\left.\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}\right\}\right] \text {. This sug- }}\right.\right.$ gests that the presence of fluorine atoms in the phenoxy ring has virtually no steric effect within the ligand itself. The electron-withdrawing effect of the fluorine atoms does, however, manifest itself in shorter $\mathrm{O}-\mathrm{C}$ distances. Complex 8a possesses larger $\mathrm{Pt}-\mathrm{P}-\mathrm{X}$ angles and smaller $\mathrm{O}-\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles than the $c i s$ isomer, $\mathbf{8 b}$. All three $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$ complexes show significant deviations from pseudo- $C_{3 v}$ symmetry about the $\mathrm{Pt}-\mathrm{PPh}_{2}(\mathrm{OR})$ bond. Complexes 4, 7 and $\mathbf{8 b}$ show anti arrangements of the $\mathrm{M}-\mathrm{P}-\mathrm{O}-\mathrm{C}$ units with absolute torsion angles $>120^{\circ}$, whereas 8a possesses a syn arrangement of the $\mathrm{Pt}-\mathrm{P}-\mathrm{O}-\mathrm{C}$ unit.

Within the series of $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$ complexes the $\mathrm{P}-\mathrm{O}$ distances decrease in the order $\mathrm{P}(\mathrm{OPh})_{3} \approx \mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}>$ $\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2}>\mathrm{PPh}_{2}(\mathrm{OPh}) \approx \mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)$. The $\mathrm{P}-\mathrm{C}$ distances show no discernible trend, but the $\mathrm{O}-\mathrm{C}$ distances decrease in the order $\mathrm{PPh}_{2}(\mathrm{OPh})>\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-\right.$ $2,6) \approx \mathrm{P}(\mathrm{OPh})_{3}>\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{3}>\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2}$. The $\mathrm{P}-\mathrm{O}-\mathrm{C}$ angles are similar for all the $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$.

Conclusion

The NMR and single-crystal X-ray diffraction studies of complexes of the type $\left[\mathrm{RhCl}_{2} \mathrm{~L}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$ and $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$ indicate that substitution of hydrogen for fluorine in the ortho positions of phenoxy moieties in the phosphorus(III) ligands $\mathrm{PPh}_{x}(\mathrm{OPh})_{3-x}(x=0-2)$ produces a negligible electronic effect
but a profound steric effect. Fluorophenyl groups are known to be considerably more electron-withdrawing than phenyl itself, as is demonstrated by the properties of pentafluorophenylphosphines and their metal complexes, ${ }^{1-3}$ and thus the oxygen atom between the phosphorus atom and the phenyl ring is acting as an insulator. The oxygen atom also acts as a spacer removing the considerable steric pressure of the o-fluorine atoms away from the phosphorus and metal atoms, as is demonstrated by the similarity of the $\mathrm{Pt}-\mathrm{PPh}_{x}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{X}_{2}-2,6\right)_{3-x}$ bond lengths for analogous perprotio and fluorine-containing complexes and the M-P bond distances being consistent with the order anticipated solely from the π-bonding abilities of the ligands. However, the greater size of the fluorine atom compared to that of the hydrogen atom still exerts a profound effect, as demonstrated by the formation of the trans platinum(II) complexes for the fluorine-containing ligands II and IV, but not for the perprotio ligands I and III, from their reactions with $\left[\left\{\mathrm{PtCl}(\mu-\mathrm{Cl})\left(\mathrm{PEt}_{3}\right)\right\}_{2}\right]$. The steric effect of the fluorine atoms can also greatly affect the angles about the metal, but has little effect upon the metal-phosphorus bond lengths.

Experimental

Physical measurements

The ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker AM300 speetrometer at $300.14,282.36$ and 121.50 MHz respectively, ${ }^{1} \mathrm{H}$ referenced internally using the residual protio solvent resonance relative to tetramethylsilane ($\delta 0$), ${ }^{19} \mathrm{~F}$ externally to $\mathrm{CFCl}_{3}(\delta 0)$ and ${ }^{31} \mathrm{P}$ externally to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(\delta 0)$. All chemical shifts are quoted in $\delta(\mathrm{ppm})$. Abbreviations used in multiplicities are $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qnt}=$ quintet, $\mathrm{m}=$ multiplet and $\mathrm{vt}=$ virtual triplet. The IR spectra were recorded as neat oils or Nujol mulls between KBr plates on a Digilab FTS40 Fourier-transform spectrometer ($s=$ strong, $m=$ medium, $w=$ weak). Elemental analyses were performed by Butterworth Laboratories Ltd. and mass spectra were recorded on a Kratos Concept 1H spectrometer.

Materials

The compounds $\mathrm{PPhCl}_{2}, \mathrm{PPh}_{2} \mathrm{Cl},\left[\left\{\mathrm{RhCl}(\mu-\mathrm{Cl})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right\}_{2}\right]$ (Aldrich) and 2,6-difluorophenol (Fluorochem) were used as supplied; $\left[\left\{\mathrm{PtCl}(\mu-\mathrm{Cl})\left(\mathrm{PEt}_{3}\right)\right\}_{2}\right]$ was prepared as described, ${ }^{21}$ $\mathrm{PPh}(\mathrm{OPh})_{2}{ }^{14}$ and $\mathrm{PPh}_{2}(\mathrm{OPh})^{15}$ as for $\mathrm{PPh}(\mathrm{OMe})_{2}{ }^{22}$ Triethylamine was dried by storage over CaH_{2}, diethyl ether over sodium wire and then distilled from sodium-benzophenone under nitrogen. Unless stated otherwise, light petroleum of b.p. $40-60^{\circ} \mathrm{C}$ was used.

Preparations

Bis(2,6-difluorophenyl) phenylphosphonite II. 2,6-Difluorophenol ($17.49 \mathrm{~g}, 0.134 \mathrm{~mol}$) and triethylamine ($19 \mathrm{~cm}^{3}, 0.136$ $\mathrm{mol})$ in diethyl ether $\left(80 \mathrm{~cm}^{3}\right)$ were added during 30 min to $\mathrm{PPhCl}_{2}\left(6 \mathrm{~cm}^{3}, 0.045 \mathrm{~mol}\right)$ in diethyl ether $\left(200 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The white solid was filtered off and washed with diethyl ether $\left(200 \mathrm{~cm}^{3}\right)$. The filtrate and washings were combined and the solvent removed under reduced pressure to give a pale yellow oil. The excess of triethylamine and 2,6-difluorophenol were distilled out at $60^{\circ} \mathrm{C}$ and $0.4 \mathrm{mmHg}(c a .53 \mathrm{~Pa})$ to yield the product as a yellow oil. No further attempts were made to purify compound II as it was found to be amenable to further reactions. Yield $7.73 \mathrm{~g}, 47 \% . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.97(2 \mathrm{H}, \mathrm{m}, \mathrm{PPh})$, $7.57(3 \mathrm{H}, \mathrm{m}, \mathrm{PPh})$ and $6.95\left(6 \mathrm{H}, \mathrm{m}, \mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right) . \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)$ $-127.41\left[\mathrm{~d},{ }^{4} J(\mathrm{PF}) 32.9 \mathrm{~Hz}\right] . \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 183.5\left[\mathrm{qntm},{ }^{4} J(\mathrm{PF})\right.$ $32.9,{ }^{3} J(\mathrm{PH}) 7.1 \mathrm{~Hz}$. Electron impact (EI) mass spectrum: m / z $366\left(M^{+}\right)$and $237\left(\left[M-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right]^{+}\right)$(Found: $M^{+}, 366.04320$. $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{P}$ requires $M^{+}, 366.04328$). IR (neat): $3079 \mathrm{w}, 2961 \mathrm{w}$, $2879 \mathrm{w}, 1601 \mathrm{~s}, 1559 \mathrm{w}, 1503 \mathrm{~s}, 1481 \mathrm{~s}, 1440 \mathrm{~m}, 1299 \mathrm{~s}, 1247 \mathrm{~s}, 1227 \mathrm{~s}$, 1209s, 1137w, 1111m, 1064m, 1013s, $924 \mathrm{w}, 870 \mathrm{~s}, 781 \mathrm{~s}, 749 \mathrm{~s}$, $693 \mathrm{~s}, 637 \mathrm{w}, 578 \mathrm{~m}, 501 \mathrm{~m}$ and $430 \mathrm{w} \mathrm{cm}^{-1}$.

2,6-Difluorophenyl diphenylphosphinite IV. 2,6-Difluorophenol ($13.90 \mathrm{~g}, 0.107 \mathrm{~mol}$) and triethylamine ($15 \mathrm{~cm}^{3}, 0.108$ mol) in diethyl ether ($80 \mathrm{~cm}^{3}$) were added during 30 min to $\mathrm{PPh}_{2} \mathrm{Cl}\left(15 \mathrm{~cm}^{3}, 0.084 \mathrm{~mol}\right)$ in diethyl ether $\left(200 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The white solid was filtered off and washed with diethyl ether $\left(100 \mathrm{~cm}^{3}\right)$. The filtrate and washings were combined and the solvent removed under reduced pressure to give an orange oil. The excess of triethylamine and 2,6-difluorophenol were distilled out at $60^{\circ} \mathrm{C}$ and 0.4 mmHg to yield the product as a yellow oil. No further attempts were made to purify compound IV as it was found to be amenable to further reactions. Yield $11.09 \mathrm{~g}, 41 \% . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.66(4 \mathrm{H}, \mathrm{m}, \mathrm{PPh}), 7.45(6 \mathrm{H}, \mathrm{m}, \mathrm{PPh})$ and $6.93\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right) . \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-126.69\left[\mathrm{dtm},{ }^{4} J(\mathrm{PF})\right.$ $\left.28.5,{ }^{3} J(\mathrm{FH}) 6.5 \mathrm{~Hz}\right] . \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 133.1\left[\mathrm{tqntm},{ }^{4} J(\mathrm{PF}) 28.5\right.$, $\left.{ }^{3} J(\mathrm{PH}) 7.8 \mathrm{~Hz}\right]$. EI mass spectrum: $\mathrm{m} / \mathrm{z} 314\left(M^{+}\right), 201$ ($\left[M-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right]^{+}$) and $185\left(\left[M-\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right]^{+}\right.$) (Found: M^{+}, 314.06723. $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{OP}$ requires $M^{+}, 314.06721$). IR (neat): 3073w, 3056w, 3008w, 1593m, 1559w, 1468s, 1476s, 1435s, 1386w, 1293s, 1244s, 1183w, 1130w, 1098m, 1059m, 1008s, 868s, $777 \mathrm{~s}, 741 \mathrm{~s}, 729 \mathrm{~s}, 697 \mathrm{~s}, 656 \mathrm{w}, 570 \mathrm{w}, 552 \mathrm{w}, 520 \mathrm{~m}, 496 \mathrm{~m}$ and 463 w cm^{-1}.
$\left[\mathrm{RhCl}_{2}\left\{\mathbf{P P h}(\mathbf{O P h})_{2}\right\}\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$ 1. A slurry of $[\{\mathrm{RhCl}(\mu-\mathrm{Cl})-$ $\left.\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right\}_{2}\right](0.202 \mathrm{~g}, 0.326 \mathrm{mmol})$ and $\mathrm{PPh}(\mathrm{OPh})_{2}(0.210 \mathrm{~g}$, 0.714 mmol) in benzene ($50 \mathrm{~cm}^{3}$) was heated under reflux under nitrogen for 3 h . The red solution was allowed to cool and the solvent removed by rotary evaporation to yield a red oil. The product was recrystallized from dichloromethane-light petroleum. Yield $0.168 \mathrm{~g}, 43 \%$. IR (Nujol): $1590 \mathrm{~m}, 1489 \mathrm{~m}, 1438 \mathrm{w}$, 1379w, 1212s, 1186s, 1157m, 1101m, 1077w, 1025m, 911 (sh), 900 (sh), $892 \mathrm{~s}, 776 \mathrm{~m}, 756 \mathrm{~m}, 721 \mathrm{~m}, 695 \mathrm{~m}, 617 \mathrm{w}$ and 584 m cm^{-1}.
[$\mathbf{R h C l}_{2}\left\{\mathbf{P P h}\left(\mathrm{OC}_{6} \mathbf{H}_{3} \mathbf{F}_{2}-\mathbf{2}, \mathbf{\sigma}_{2}\right\}\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathbf{M e}_{5}\right)\right]$ 2. A slurry of $\left[\left\{\operatorname{RhCl}(\mu-\mathrm{Cl})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right\}_{2}\right](0.146 \mathrm{~g}, 0.237 \mathrm{mmol})$ and $\mathrm{PPh}-$ $\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2}(0.190 \mathrm{~g}, 0.517 \mathrm{mmol})$ in benzene $\left(50 \mathrm{~cm}^{3}\right)$ was heated under reflux under nitrogen for 2 h . The red solution was allowed to cool and concentrated by rotary evaporation to $c a .25 \mathrm{~cm}^{3}$. Light petroleum (b.p. $100-120^{\circ} \mathrm{C}, 120 \mathrm{~cm}^{3}$) was added until the orange product, 2, was precipitated. The solid was filtered off, washed with light petroleum ($100 \mathrm{~cm}^{3}$) and dried in vacuo. Yield $0.116 \mathrm{~g}, 36 \%$. A sample for elemental analysis was recrystallized from dichloromethane-light petroleum. IR (Nujol): $1603 \mathrm{w}, 1509 \mathrm{~m}, 1484 \mathrm{~s}, 1312 \mathrm{w}, 1296 \mathrm{~m}$, $1248 \mathrm{w}, 1223 \mathrm{w}, 1198 \mathrm{~m}, 1159 \mathrm{w}, 1103 \mathrm{~m}, 1084 \mathrm{w}, 1063 \mathrm{w}, 1015 \mathrm{~s}$, 926s, 895s, 790w, 752m, 726m, 710w, 690m, 657w, 618w, 574m, $523 \mathrm{~m}, 472 \mathrm{w}$ and $452 \mathrm{~m} \mathrm{~cm}^{-1}$.
[$\left.\mathrm{RhCl}_{2}\left\{\mathrm{PPh}_{2}(\mathbf{O P h})\right\}\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$ 3. A slurry of $[\{\mathrm{RhCl}(\mu-$ $\left.\mathrm{Cl})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right\}_{2}$] $(0.210 \mathrm{~g}, 0.34 \mathrm{mmol})$ and $\mathrm{PPh}_{2}(\mathrm{OPh})(0.203 \mathrm{~g}$, 0.729 mmol) in benzene ($60 \mathrm{~cm}^{3}$) was heated under reflux under nitrogen for 2.5 h . The red solution was allowed to cool and concentrated by rotary evaporation to $c a .20 \mathrm{~cm}^{3}$. Light petroleum (b.p. $100-120^{\circ} \mathrm{C}, 100 \mathrm{~cm}^{3}$) was added until the orange product, $\mathbf{3}$, was precipitated. The solid was filtered off, washed with light petroleum ($100 \mathrm{~cm}^{3}$) and dried in vacuo. Yield 0.072 g , 38%. A sample for elemental analysis was recrystallized from dichloromethane-light petroleum. IR (Nujol): 1591m, 1489m, $1464 \mathrm{~m}, 1437 \mathrm{~m}, 1379 \mathrm{~m}, 1216 \mathrm{~s}, 1182 \mathrm{w}, 1157 \mathrm{w}, 1093 \mathrm{~m}, 1078 \mathrm{w}$, $915 \mathrm{~s}, 752 \mathrm{~m}, 726 \mathrm{~m}, 696 \mathrm{~m}, 614 \mathrm{w}, 578 \mathrm{w}, 564 \mathrm{w}, 521 \mathrm{~m}$ and 496 w cm^{-1}.
[$\left.\mathbf{R h C l}_{2}\left\{\mathbf{P P h}_{2}\left(\mathbf{O C}_{6} \mathbf{H}_{3} \mathbf{F}_{2} \mathbf{- 2 , 6}\right)\right\}\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathbf{M e}_{5}\right)\right]$ 4. A slurry of $\left[\left\{\mathrm{RhCl}(\mu-\mathrm{Cl})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right\}_{2}\right](0.106 \mathrm{~g}, 0.172 \mathrm{mmol})$ and $\mathrm{PPh}_{2}-$ $\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)(0.160 \mathrm{~g}, 0.511 \mathrm{mmol})$ in benzene $\left(50 \mathrm{~cm}^{3}\right)$ was heated under reflux under nitrogen for 2 h . The red solution was allowed to cool and concentrated by rotary evaporation to $c a$. $25 \mathrm{~cm}^{3}$. Light petroleum (b.p. $100-120^{\circ} \mathrm{C}, 150 \mathrm{~cm}^{3}$) was added until the orange product, 4, was precipitated. The solid was filtered off, washed with light petroleum ($100 \mathrm{~cm}^{3}$) and dried in
vacuo. Yield $0.182 \mathrm{~g}, 85 \%$. IR (Nujol): 1599m, 1493s, 1478 s , $1439 \mathrm{~m}, 1378 \mathrm{w}, 1293 \mathrm{~m}, 1243 \mathrm{~m}, 1207 \mathrm{~s}, 1181 \mathrm{w}, 1108 \mathrm{~m}, 1084 \mathrm{~m}$, 1054w, 1028m, 1006s, $881 \mathrm{~s}, 779 \mathrm{~m}, 754 \mathrm{~m}, 748 \mathrm{~s}, 721 \mathrm{~s}, 700 \mathrm{~m}$, 638w and $613 \mathrm{w} \mathrm{cm}^{-1}$.
cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathbf{P P h}(\mathbf{O P h})_{2}\right\}\right]$ 5. A slurry of $[\{\mathrm{PtCl}(\mu-\mathrm{Cl})-$ $\left.\left.\left(\mathrm{PEt}_{3}\right)\right\}_{2}\right](0.111 \mathrm{~g}, 0.144 \mathrm{mmol})$ and $\mathrm{PPh}(\mathrm{OPh})_{2}(0.109 \mathrm{~g}, 0.37$ mmol) in acetone ($40 \mathrm{~cm}^{3}$) was heated to reflux for 10 min . The solution was allowed to cool and light petroleum ($35 \mathrm{~cm}^{3}$) was added. Concentration by rotary evaporation and further addition of light petroleum precipitated the product, which was recrystallized from dichloromethane-light petroleum. Yield $0.061 \mathrm{~g}, 31 \%$. IR (Nujol): $1587 \mathrm{~m}, 1484 \mathrm{~s}, 1438 \mathrm{~m}, 1377 \mathrm{w}, 1207 \mathrm{~m}$, 1183s, $1150 \mathrm{~m}, 1114 \mathrm{~m}, 1043 \mathrm{~m}, 1018 \mathrm{w}, ~ 924 \mathrm{~s}, 808$ (sh), 776s, $735 \mathrm{~m}, 712 \mathrm{~m}, 689 \mathrm{~m}$ and $598 \mathrm{~m} \mathrm{~cm}^{-1}$.
trans- and cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-\mathbf{2}, \mathbf{6}\right)_{2}\right\}\right] \mathbf{6 a}$ and $\mathbf{6 b}$. A slurry of $\left[\left\{\mathrm{PtCl}(\mu-\mathrm{Cl})\left(\mathrm{PEt}_{3}\right)\right\}_{2}\right](0.100 \mathrm{~g}, 0.15 \mathrm{mmol})$ and $\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)_{2}(0.132 \mathrm{~g}, 0.15 \mathrm{mmol})$ in acetone $\left(40 \mathrm{~cm}^{3}\right)$ was heated to reflux under nitrogen for 10 min to give a pale yellow solution. This was allowed to cool and concentrated by rotary evaporation. Addition of light petroleum ($30 \mathrm{~cm}^{3}$) precipitated the product as pale yellow crystals, which were filtered off, washed with light petroleum and dried in vacuo. Recrystallization from acetone-light petroleum yielded pale yellow crystals of the trans isomer, 6a. Yield $0.072 \mathrm{~g}, 33 \%$. IR (Nujol): 1653w, 1604w, 1558w, 1540w, 1496m, 1381s, 1299m, 1248w, $1219 \mathrm{~m}, 1203 \mathrm{~m}, 1153 \mathrm{w}, 1117 \mathrm{w}, 1060 \mathrm{w}, 1040 \mathrm{w}, 1012 \mathrm{~s}, 933 \mathrm{w}$, $916 \mathrm{w}, 895 \mathrm{~m}, 839 \mathrm{w}, 774 \mathrm{~m}$ (br), 760 m (br), $729 \mathrm{~m}, 692 \mathrm{w}, 668 \mathrm{w}$, $576 \mathrm{w}, 526 \mathrm{w}, 481 \mathrm{w}$ and $458 \mathrm{w} \mathrm{cm}^{-1}$ Over several weeks in acetone solution at room temperature isomerization of $\mathbf{6 a}$ occurred to yield colourless crystals of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}\left(\mathrm{OC}_{6} \mathrm{H}_{3}-\right.\right.\right.$ $\left.\left.\mathrm{F}_{2}-2,6\right)_{2}\right\}$] 6b. IR (Nujol): 1601m, 1559w, 1515s, 1481s, $1438 \mathrm{~m}, 1415 \mathrm{w}, 1382 \mathrm{w}, 1304 \mathrm{~m}, 1243 \mathrm{~m}, 1219 \mathrm{~m}, 1188 \mathrm{~s}, 1115 \mathrm{~m}$, $1061 \mathrm{~m}, ~ 1038 \mathrm{~m}, ~ 1011 \mathrm{~s}, 920 \mathrm{~s}, 904 \mathrm{~s}, 770 \mathrm{~s}, 750 \mathrm{~m}, 728 \mathrm{~s}, 716 \mathrm{~m}$, $690 \mathrm{~m}, 669 \mathrm{w}, 583 \mathrm{~m}, 573 \mathrm{w}, 527 \mathrm{w}, 497 \mathrm{w}, 488 \mathrm{w}, 467 \mathrm{w}$ and 434 w cm^{-1}.
$\left[\mathrm{PtCl}_{2}\left(\mathbf{P E t}_{3}\right)\left\{\mathbf{P P h}_{2}(\mathbf{O P h})\right\}\right]$ 7. A slurry of $[\{\mathrm{PtCl}(\mu-\mathrm{Cl})-$ $\left.\left.\left(\mathrm{PEt}_{3}\right)\right\}_{2}\right](0.159 \mathrm{~g}, 0.207 \mathrm{mmol})$ and $\mathrm{PPh}_{2}(\mathrm{OPh})(0.159 \mathrm{~g}, 0.571$ mmol) in acetone ($40 \mathrm{~cm}^{3}$) was heated to reflux under nitrogen for 10 min to give a pale yellow solution. The solution was allowed to cool and concentrated by rotary evaporation. Addition of light petroleum ($35 \mathrm{~cm}^{3}$) precipitated the product as colourless crystals, which were filtered off, washed with light petroleum and dried in vacuo. Recrystallization from acetonelight petroleum gave pale colourless crystals of complex 7. Yield $0.093 \mathrm{~g}, 39 \%$. IR (Nujol): $1559 \mathrm{~m}, 1464 \mathrm{~s}, 1437 \mathrm{~m}, 1377 \mathrm{~m}$, $1188 \mathrm{~m}, 1164 \mathrm{~m}, 1105 \mathrm{~m}, 1040 \mathrm{~m}, 904 \mathrm{w}, 880 \mathrm{~s}, 775 \mathrm{~m}$ and 695 m cm^{-1}.
trans- and cis-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathbf{H}_{3} \mathrm{~F}_{\mathbf{2}} \mathbf{- 2 , 6}\right)\right\}\right] \mathbf{8 a}$ and $\mathbf{8 b}$. A slurry of $\left[\left\{\mathrm{PtCl}(\mu-\mathrm{Cl})\left(\mathrm{PEt}_{3}\right)\right\}_{2}\right](0.100 \mathrm{~g}, 1.06 \mathrm{mmol})$ and $\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)(1.200 \mathrm{~g}, 3.82 \mathrm{mmol})$ in acetone $\left(40 \mathrm{~cm}^{3}\right)$ was heated to reflux under nitrogen for 10 min to give a pale yellow solution. This was allowed to cool and concentrated by rotary evaporation to $c a .10 \mathrm{~cm}^{3}$. Addition of light petroleum ($50 \mathrm{~cm}^{3}$) precipitated the product as pale yellow crystals, which were filtered off, washed with light petroleum and dried in vacuo. Recrystallization from acetone-light petroleum gave pale yellow crystals of the trans isomer, 8a. Yield $0.129 \mathrm{~g}, 87 \%$. IR (Nujol): $1539 \mathrm{w}, 1495 \mathrm{~m}, 1467 \mathrm{~s}, 1435 \mathrm{~m}, 1379 \mathrm{~m}, 1299 \mathrm{~m}, 1243 \mathrm{~m}$, $1195 \mathrm{~m}, 1152 \mathrm{w}, 1103 \mathrm{~s}, 1036 \mathrm{~s}, 1008 \mathrm{~s}, 873 \mathrm{~s}, 785 \mathrm{~m}, 764 \mathrm{~m}, 751 \mathrm{~s}$, $722 \mathrm{~s}, 692 \mathrm{~s}, 576 \mathrm{~m}, 532 \mathrm{~m}, 505 \mathrm{w}$ and $485 \mathrm{w} \mathrm{cm}^{-1}$. Over several days in acetone solution at room temperature isomerization of 8a occurred to yield colourless crystals of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right.$ $\left.\left\{\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)\right\}\right]$ 8b. IR (Nujol): $1540 \mathrm{w}, 1493 \mathrm{~m}, 1477 \mathrm{~m}$, $1435 \mathrm{w}, 1420 \mathrm{w}, 1383 \mathrm{w}, 1299 \mathrm{~m}, 1241 \mathrm{~m}, 1200 \mathrm{~s}, 1151 \mathrm{w}, 1106 \mathrm{~s}$, $1040 \mathrm{~m}, ~ 1011 \mathrm{~s}, ~ 873 \mathrm{~s}, 784 \mathrm{~m}, 765 \mathrm{w}, 761 \mathrm{~s}, 725 \mathrm{~m}, 704 \mathrm{w}, 691 \mathrm{~m}$, $645 \mathrm{w}, 579 \mathrm{~m}, 535 \mathrm{~m}, 504 \mathrm{w}, 488 \mathrm{w}$ and $466 \mathrm{w} \mathrm{cm}^{-1}$.
 $\left.\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}_{2}(\mathrm{OPh})\right\}\right] 7$, trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)\right\}\right] \cdot 0.75 \mathrm{H}_{2} \mathrm{O} \mathbf{8 a} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$ and cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)\right\}\right] \mathbf{8 b}$
$\stackrel{8 \mathrm{~b}}{24} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{OP}_{2} \mathrm{Pt}$ 698.39
190
\circ
0
0
\times
\vdots
\vdots
\times
\times
0
0
0
${ }_{P \overline{1}}^{\text {Triclinic }}$
7.927(1)
$10.811(1)$
$15.432(4)$
든

1.859
5.994
680
$5.24-52.0$
-1 to $9,-12$ to
$12,-19$ to 19
4837 (0.0257)
4246
289
$0.0316,0.0719$ 0.0408, 0.0765
1.026
+0.946 $0.0347,0.68$
$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{OP}_{2}-$ $\mathrm{C}_{24} \mathrm{P}_{28} 0.5 \mathrm{H}_{2} \mathrm{O}$
714.4
293
$0.90 \times 0.21 \times 0.15$ Tetragonal
23.719(2)
10.133(3)
$102.47(1)$
$1255.3(3)$
2204
292
0.0655,
0.0768
1.06
$\begin{array}{lll}\mathbf{6 a} & \mathbf{C} & \mathbf{7} \\ \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pt} & \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pt} & \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{OP}_{2} \mathrm{Pt}\end{array}$
$\begin{array}{ll}193 & 293 \\ 0.80 \times 0.34 \times 0.13 & 0.38 \times 0.12 \times 0.05\end{array}$
Triclinic
$P \overline{1}$
8.067(1)
$11.187(2)$
$15.087(2)$
91.11(1)
$\stackrel{n}{N}$
648
$5.20-52.0$
$5.20-52.0$
-1 to $9,-12$ to
$12,-18$ to 18
$12,-18$ to 18
5889
$4808(0.0308)$
271 1-0360,0.0706
$0.0360,0.0776$
$0.0528,0.0763$
1.011,
+0.838,
$0.0246,0$

 $\left.0)+2 F_{\mathrm{c}}^{2}\right] / 3$.

X-Ray crystallography

Crystals suitable for single-crystal X-ray diffraction studies were grown from dichloromethane (complexes 1, 4 and 7) or acetone ($\mathbf{6 a}, \mathbf{6 b}, \mathbf{8 a}$ and $\mathbf{8 b}$). Table 9 summarizes the crystallographic data. All data sets were corrected for Lorentzpolarization effects and absorption corrections were applied based on ψ-scan data. The structures were solved by Patterson methods using the program SHELXTL-PC ${ }^{23}$ and refined on F^{2} using full-matrix least squares; 4, 6a and 8a were refined using the program SHELXTL-PC and $\mathbf{1}, \mathbf{6 b}, 7$ and $\mathbf{8 b}$ using SHELXL $93 .{ }^{24}$ There were two crystallographically unique molecules in the asymmetric units of both $\mathbf{1}$ and $\mathbf{6 a}$. The absolute configuration was determined for 1 with the Flack parameter 0.054 (0.068). All non-hydrogen atoms were refined as anisotropic with the exception of the solvent atoms in 8a. High values for anisotropic displacement parameters of some atoms were found for $\mathbf{1}, \mathbf{6 a}$ and 7 . Attempts to account for these in terms of disordered models did not lead to significant improvements in the refinements.

Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1997, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/373.

Acknowledgements

We thank BNFL Fluorochemicals Ltd. (to G. C. S.) and the Royal Society (to E. G. H.) for support and K. S. Coleman for helpful discussion.

References

1 R. D. W. Kemmitt, D. I. Nichols and R. D. Peacock, Chem. Commun., 1967, 599; R. D. W. Kemmitt, D. I. Nichols and R. D. Peacock, J. Chem. Soc. A, 1968, 1898, 2149.

2 M. J. Atherton, K. S. Coleman, J. Fawcett, J. H. Holloway, E. G. Hope, A. Karaçar, L. A. Peck and G. C. Saunders, J. Chem. Soc., Dalton Trans., 1995, 4029.

3 J. H. Holloway, E. G. Hope, D. R. Russell, G. C. Saunders and M. J. Atherton, Polyhedron, 1996, 15, 173.

4 J. H. Holloway, E. G. Hope, G. C. Saunders and A. M. Stuart, unpublished work.
5 I. Ojima and H. B. Kwon, J. Am. Chem. Soc., 1988, 110, 5617.
6 M. F. Ernst and D. M. Roddick, Inorg. Chem., 1990, 29, 3627.
7 R. K. Merwin, R. C. Schnabel, J. D. Koola and D. M. Roddick, Organometallics, 1992, 11, 2972.
8 M. J. Atherton, J. Fawcett, J. H. Holloway, E. G. Hope, A. Karaçar, D. R. Russell and G. C. Saunders, J. Chem. Soc., Chem. Commun., 1995, 191.
9 A. S. Chan, C.-C. Pai, T.-K. Yang and S.-M. Chen, J. Chem. Soc., Chem. Commun., 1995, 2031.
10 M. J. Atherton, J. Fawcett, J. H. Holloway, E. G. Hope, A. Karaçar, D. R. Russell and G. C. Saunders, J. Chem. Soc., Dalton Trans., 1996, 3215.

11 J. H. Holloway, E. G. Hope, K. Jones, G. C. Saunders, J. Fawcett, N. Reeves, D. R. Russell and M. J. Atherton, Polyhedron, 1993, 12, 2681.

12 K. S. Coleman, J. H. Holloway, E. G. Hope, D. R. Russell, G. C. Saunders and M. J. Atherton, Polyhedron, 1995, 14, 2107.

13 J. Fawcett, J. H. Holloway, E. G. Hope, G. C. Saunders and M. J. Atherton, Acta Crystallogr., Sect. C, 1996, 52, 2463.

14 K. A. Petrov, V. P. Evdakov, K. A. Bilevich and Y. S. Kosarev, Zh. Obshch. Khim., 1962, 32, 1974.
15 M. Sander, Chem. Ber., 1960, 93, 1220.
16 P. S. Pregosin and R. W. Kunz, NMR 16, Basic Principles and Progress, Springer, Berlin, 1979.
17 J. H. Holloway, E. G. Hope and G. C. Saunders, unpublished work. 18 F. H. Allen and S. N. Sze, J. Chem. Soc. A, 1971, 2054.
19 A. N. Caldwell, L. Manojlović-Muir and K. W. Muir, J. Chem. Soc., Dalton Trans., 1977, 2265.
20 A. D. U. Hardy and G. A. Sim, J. Chem. Soc., Dalton Trans., 1972, 1900.

21 R. J. Goodfellow and L. M. Venanzi, J. Chem. Soc., 1965, 7533.

22 K. S. Colle and E. S. Lewis, J. Org. Chem., 1978, 43, 571.
23 G. M. Sheldrick, SHELXTL-PC, Release 4.2, Siemens Analytical X-Ray Instruments, Madison, WI, 1991
24 G. M. Sheldrick, SHELXL 93, Program for Crystal Structure Refinement, University of Göttingen, 1993.

Received 25th September 1996; Paper 6/06584H

